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Real solid systems in polymerization fluidized bed reactors (FBRs) are characterized by wide particle size
distributions that change continuously due to particle micro-behavior, growth and aggregation, etc. Simulations
of such gas–solid flow hydrodynamics require the solution of a coupled computational fluid dynamics (CFD)-
population balance equation (PBE) model, i.e. the CFD-PBM. Therefore, the analysis of the existing numerical
methods for solving the PBE is important for the ability of the numerical prediction of the coupled model.
Three representatively numerical moment-based methods, namely the quadrature method of moments
(QMOM), the direct quadrature method of moments (DQMOM) and the fixed pivot quadrature method of
moments (FPQMOM), were used to solve the PBE for evaluating the effect of numerical method. Comparative
results demonstrated the suitability of the FPQMOM for modeling polymerization FBRs with simultaneous
polymerization particle growth and aggregation.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In general, the real heterogeneous polymerization systems in
fluidized bed reactors (FBRs) are polydisperse [1–3]. FBR is also one of
the most widespread commercial reactors to produce polyolefin due
to its simple construction and excellent transfer capabilities [4]. In
such systems, the particle growth (due to polymerization kinetics)
and particle aggregation (due to particle softening at high temperature)
can enlarge the polydispersity [5]. In an effort to consider the effect of
the polydispersity of particles on the flow behaviors, a coupled model,
namely CFD-PBM, must be employed [6]. Recently, there are papers
on the kinetic theory application in polydispersed cases (i.e. the CFD-
PBM), which are also on verification and validation study of some
polydisperse kinetic theories. However, the current work is on the
solution of PBM.

Since the existence and uniqueness of the solution of population
balance equation (PBE) is a standard subject in mathematical textbooks
[6], the PBE can be solved at least in principle. Unfortunately, there are
few analytical solution strategies, while these available strategies are
only for simplified problems thus cannot be adopted for real systems
[7]. Numerical methods, as the primary solution strategies, can be
classified into the method of classes [8], the Monte Carlo method [9]
and the method of moments (MOMs) [10]. Among them, the MOMs
are preferable to coupling the PBE solution with CFD codes for poly-
disperse multiphase flow simulations due to their easy application,
reasonable accuracy and moderate computational cost [11–18]. The
MOMs tracks a selected set of lower order moments of the particle
distribution function. However, the MOMs suffer from the “closure
problem” [10], which limits its usage in the academic community at
early stage.

In order to solve this closure problem, McGraw introduced Gaussian
quadrature approximation to the particle size distribution (PSD) [12],
and since then, some new improved MOMs, such as the QMOM
[12–15], the DQMOM [19–21] and the sectional quadrature method of
moments (SQMOM) [22], were suggested. Regarding their detailed
descriptions, the readers are referred to works [12–15,19–27]. The
QMOM and the DQMOM are the most promising moment methods at
present. However, one has to resort to the product-difference (PD)
algorithm to calculate the quadrature abscissas and weights with
them (QMOMat each time step and DQMOMat start). The actual values
for abscissas and weights are not restricted to be positive in PD algo-
rithm itself, which leads to the appearing of the zero abscissas if the
number of the moments tracked is high (10 for instance). Thus, their
application in tracking large number of moments is limited [27]. More-
over, they would become computationally intractable, and in the worst
case numerical instability could occur [28]. Recently, Gu et al. proposed
a new MOM based on the fixed pivot moments, namely the fixed pivot
quadrature method of moments (FPQMOM), to solve the above
problems for PBEs [29]. Different from the QMOM and the DQMOM,
themost important feature of the FPQMOM is that constant characteris-
tic abscissas are artificially specified at the beginning of the simulation
and remain the same throughout thewhole simulation. Also an efficient
and accurate algorithm is used to solve the Vandermonde linear system
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Fig. 1. (a) Reactor configuration and (b) CFD grid.
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to obtain theweights of Dirac Delta function,which is different from the
PD algorithm as described earlier in the QMOM and the DQMOM.
Nevertheless, the FPQMOM has not been used to solve the PBEs within
the CFD-PBMmodel since it was suggested by Gu et al. in 2009 [29–32].
They only presented the basic steps for coupling the FPQMOMwith CFD
for modeling multiphase flows.

Considerable attention has been devoted in recent years to the
application of these MOMs except the FPQMOM to solve PBEs in gas–
solid FBRs [33–43]. Comparative analysis of MOMs in FBRs has also
been reported [42]. For instance, Ahmadzadeh et al. described the
evolution and growth of the particle size in gas–solid rotating fluidized
bed olefin polymerization reactors using a CFD-PBM. The standard
method of moments and QMOM were used to solve the PBEs [33].
Mazzei et al. described the behaviors of polydisperse fluidized
multiphase systems in a Eulerian framework incorporating the PBEs.
In their work, a novel version of the QMOM was formulated and
implemented [34]. Luo et al. simulated the gas–solid flows in poly-
merization FBRs using a CFD-PBM [35,36], and later extended the
CFD-PBM to simulate the gas–solid flows in multizone circulating
polymerization reactors [37]. The QMOM was adopted for solving the
PBEs in these works. Recently, Li et al. used the QMOM to solve the
PBM for realizing the combination of the CFD model and PBM for
simulating FCC risers [38]. In addition, the DOMOM has been used
by Fan et al. [21], Fan and Fox [39] and Mazzei et al. [40] to simulate
gas–solidflows in dense fluidized beds. Dutta et al. simulated thehydro-
dynamic behavior of dispersed gas–solid flow in an industrial-scale FCC
riser using a CFD-PBM and theDQMOMwas used to solve the PBEs [41].
Mazzei comparatively analyzed the QMOM and DQMOM transport
equations obtained to describe the gas–solid fluidization dynamics of
two inert polydisperse powders initially segregated, showing their
limitations for modeling inhomogeneous polydisperse fluidized
powders [42]. However, in these works [33–42], the reactions within
polydisperse solid particleswere generally ignored and the examination
in a CFD-PBM was performed at cold model condition without particle
growth due to reaction kinetics. In addition, although the FPQMOM
is excellent in principle, there is still absence of examination and
comparative analysis in gas–solid FBRs for it. To the best of our knowl-
edge, there is so far no open literature on assessment of different
MOMs in simulating gas–solid flows in polydisperse polymerization
FBRs [43]. Thus, the quantitative understanding of the effect of MOM
type on the gas–solid flow behavior remains unclear, which needs
further investigation.

In this work, a two-dimensional (2D) CFD-PBM coupled modeling
approach is proposed to investigate the gas–solid hydrodynamics in a
polydisperse propylene polymerization FBR. In the coupled model, the
Eulerian–Eulerian two-fluid model involving the kinetic theory of
granular flow, the population balance and the heat exchange equations.
Three representative MOMs, i.e. QMOM, DQMOM and FPQMOM, are
used to solve the PBEs in the coupled model to investigate their effects
on the bed hydrodynamics. Some of the results are also validated with
classical calculation.

2. Mathematical model and numerical simulations

2.1. Simulated reactor

To obtain the effect of the MOMs on the gas–solid hydrodynamics
in a polydisperse polymerization FBR, an experiment-scale FBR was
studied as in our previous works [44]. Fig. 1 illustrates the FBR configu-
ration and the CFD grid.

2.2. The CFD-PBM and the MOMs

The 2D CFD-PBM model in this work is analogous to that reported
in our previous works [35,36,44] with minor difference. The most
significant difference is the MOM used in the CFD-PBM. Besides the
QMOM, the DQMOM and the FPQMOM are applied herein. For a
detailed description of the 2D CFD-PBM, the readers are encouraged to
refer to our previous work [35,36,44]. Due to space limitation, two
phase dynamics equations are listed in Table 1. Herein,we only describe
PBEs and MOMs.

2.2.1. The PBEs
The general form of the univariate PBE is:

∂n L; tð Þ
∂t þ∇ � u!n L; tð Þ

h i
¼ − ∂

∂L G Lð Þn L; tð Þ½ � þ Bag L; tð Þ−Dag L; tð Þ
þBbr L; tð Þ−Dbr L; tð Þ

ð1Þ

The moments of the PSD first introduced by Hulburt and Katz are
defined as [10]:

mk tð Þ ¼
Z∞
0

n L; tð ÞLkdL k ¼ 0;1; � � �;N−1 ð2Þ

In addition, the Sauter Diameter (d32) is used as the mean particle
diameter given by

d32 ¼ m3

m2
ð3Þ

Substituting Eq. (2) into Eq. (1) yields:

∂mk

∂t þ∇ � u!mk

� �
¼ −

Z∞
0

kLk−1G Lð Þn L; tð ÞdLþ Bag tð Þ−Dag tð Þ

þ Bbr tð Þ−Dbr tð Þ
ð4Þ

2.2.2. Three different moment methods

2.2.2.1. The QMOM. The QMOM uses a Gaussian quadrature approxima-
tion expressed as follows [12–15]

mk ¼
Z∞
0

n L; tð ÞLkdL≈
XN
i¼1

wiL
k
i ð5Þ

where, wi and Li are obtained with PD algorithm from the first 2 N
moments [48].



Table 1
The CFD model.

Description Equation

Eulerian–Eulerian Two Fluid Model
Continuity equation for phase q ∂

∂t aqρq

� �
þ∇ � aqρq vq

�!� �
¼ m

•

sp

Momentum balance equation for gas ∂
∂t agρg v

!
g

� �
þ∇ � agρg v

!
g � v!g

� �
¼ −ag∇pþ∇ � τg þ β v!s− v!g

� �
þ agρgg

Momentum balance equation for solid ∂
∂t αsρs v

!
s

� �
þ∇ � αsρs v

!
s v
!

s

� �
¼ −αs∇p−∇ps þ∇ � τs þ β v!g− v!s

� �
þ αsρsg

Energy balance equation for gas ∂
∂t αgρghg

� �
þ∇ � αgρgvghg

� �
¼ −αg

∂pg
∂t þ τg : ∇vg−∇ � qg þ ∑

n

p¼1
Qgs þm

•

gshgs−m
•

sghsg
� �

Energy balance equation for solid ∂
∂t αsρshsð Þ þ∇ � αsρsvshsð Þ ¼ −αs

∂ps
∂t þ τs : ∇vs−∇ � qs þ ∑

n

p¼1
Qsg þm

•

sghsg−m
•

gshgs
� �

þ ΔQrsα

Heat exchange model Qgs = κgs(Ts − Tg)

κgs ¼ 6κgαgαsNus

d2s

Gunn formula [45] Nus ¼ 7−10ag þ 5a2g
� �

1þ 0:7Re0:2s ;Pr1=3
� �

þ
1:33−2:4ag þ 1:2a2g

� �
Re0:7s ;Pr1=3

βEMMS ¼ 3
4
αsαgρg vs

!− vg
�!�� ��

ds
CDωαg≥0:74

βErgun ¼ 150 αs
2μg

αgd
2
s
þ 1:75

αsρg vs
!− vg

�!�� ��
ds

αgb0:74

8><
>:

EMMS drag model [46,47]

ω ¼
−0:5760þ 0:0214

4 ag−0:7463ð Þ2þ0:0044
0:74≤ag≤0:82

−0:0101þ 0:0038
4 ag−0:7789ð Þ2þ0:0040

0:82bag≤0:97

−31:8295þ 32:8295ag agN0:97

8>><
>>:

CD ¼
24

αgRes
1þ 0:15 αgRes

� �0:687h i
Res≤1000

0:44 ResN1000

(

Gas phase stress tensor τg ¼ αgμg ∇ v!g þ∇ v!g
T

� �
Solid phase stress tensor τs ¼ αsμs ∇ v!s þ∇ v!s

T
� �

þ αs λs− 2
3 μs

� �
∇ � v!sI

Kinetic Theory of Granular Flow (KTGF) [56]
Complete granular temperature [57,58] Θs ¼ 1

3 v
0
sv

0
s

3
2

∂
∂t ρsasΘsð Þ þ∇ � ρsasvs

!Θs

� �h i
¼ −psI þ τs

� �
: ∇vs

!
þ∇ � kΘs∇Θs

� �
−γΘs

þ ϕgs

kΘs ¼ 15ρsdsas
ffiffiffiffiffiffi
πΘs

p
4 41−33ηð Þ 1þ 12

5 η2 4η−3ð Þasg0 þ 16
15π 41−33ηð Þηasg0

	 

γΘs

¼ 12 1−e2sð Þg0
ds

ffiffi
π

p ρsa
2
sΘ

1:5
s

ϕgs = −3KgsΘs

Algebraic equation of granular temperature 0 ¼ −psI þ τ!s

� �
: ∇ v!s−γΘs

−3KgsΘs

Radial distribution function go ¼ 1
1− as=as; ;maxð Þ1=3

Solid pressure ps = asρsΘs[1 + 2goas(1 + es)]
Bulk viscosity λs ¼ 4

3 asρsdsgo 1þ esð Þ
ffiffiffiffi
Θs
π

q
Solids viscosity [59,60] μs = μs,col + μs,kin + μs,fr

μs;col ¼ 4
5 asρsdsg0 1þ esð Þ

ffiffiffiffi
Θs
π

q
μs;kin ¼ 10dsρs

ffiffiffiffiffiffi
Θsπ

p
96as 1þesð Þg0 1þ 4

5 1þ esð Þasg0
	 
2

μs; f r ¼ ps ;sinθ
2

ffiffiffiffiffi
I2D

p

Turbulent model [61,62]
Standard k − ε model ∇ � ρmk vm

�!� �
¼ ∇ � μ t;m

σε
∇k

� �
þ Gk;m−ρmε

∇ � ρmε vm
�!� �

¼ ∇ � μt;m
σε

∇ε
� �

þ ε
k þ C1εGk;m−C2ερmε

� �
ρm ¼ ∑

N

i¼1
aiρi

vm
�! ¼ ∑N

i¼1aiρi vm
�!

∑N
i¼1aiρi

μ t;m ¼ ρmCμ
k2

ε
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By introducing the quadrature approximation, integrals of the
density function are turned into summations, and Eq. (4) can bewritten
as:

∂mk

∂t þ∇ � u!mk

� �
¼ k

XN
i¼1

Lk−1
i G Lið Þwi þ

1
2

XN
i¼1

wi

XN
j¼1

wj L3i þ L3j
� �k=3

βi; j

−
XN
i¼1

Lki wi

XN
j¼1

wjβi; j þ
XN
i¼1

wiaibi−
XN
i¼1

Lki wiai

ð6Þ
where,β i,j = β(L i, L j),a i = a(L i), bi ¼ ∫
∞

0

Lkb LjLið ÞdL are aggregation

kernel, breakage kernel and daughter distribution function,
respectively.
2.2.2.2. The DQMOM. The DQMOM introduces the Gaussian approxima-
tion before moment transformation, and as a result, wi and ζi (ζi =
Liwi) are tracked directly and the PD algorithm is no longer needed



Fig. 2. The CFD-PBM coupled model.
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during the simulation. The transport equations for them are written
as [19–21]

∂ωi

∂t þ∇ � u!�ωi

� �
¼ ai ð7Þ

∂ζ i

∂t þ∇ � u!� ζ i

� �
¼ bi ð8Þ

where, ai and bi are evaluated via solving a linear system given by

Aα ¼ d ð9Þ

where, the coefficient A = [A1 A2] is a 2 N × 2 N matrix defined by:

A1 ¼

1 ⋯ 1
0 ⋯ 0

−L21 ⋯ −L2N
⋮ ⋮ ⋮

2 1−Nð ÞL2N−1
1 ⋯ 2 1−Nð ÞL2N−1

N

2
66664

3
77775 ð10Þ

A2 ¼

0 ⋯ 0
1 ⋯ 1
2L1 ⋯ 2LN
⋮ ⋮ ⋮

2N−1ð ÞL2N−2
1 ⋯ 2N−1ð ÞL2N−2

N

2
66664

3
77775 ð11Þ

α ¼ a1⋯aN ; b1⋯bN½ �T ¼ a
b

� �
ð12Þ

d ¼ S Nð Þ
0 ⋯ S Nð Þ

2N−1

h iT ð13Þ

where, the source term for the kth moment S Nð Þ
2N−1 is written as:

S Nð Þ
k ¼

Z∞
0

LkS L; tð ÞdL ð14Þ

In addition, the source terms in Eq. (14) are the same as those in
QMOM written as

S Nð Þ
k ¼ k

XN
i¼1

Lk−1
i G Lið Þwi þ

1
2

XN
i¼1

wi

XN
j¼1

wj L3i þ L3j
� �k=3

βi; j

−
XN
i¼1

Lki wi

XN
j¼1

wjβi; j þ
XN
i¼1

wiaibi−
XN
i¼1

Lki wiai

ð15Þ

2.2.2.3. The FPQMOM. The fixed pivot quadrature method of moments
(FPQMOM) adopts the following approximation of particle size
distribution [29]:

n V ; tð Þ ¼
XN
i¼1

ωi tð Þδ V−Við Þ ð16Þ

where, Vi is specified to be theN order Laguerre–Gaussian abscissas and
remains constant throughout the simulation. It should be pointed out
that the assumption in Eqs. (16) is different from that in QMOM in
essence, although they look similar in form.

Based on the assumption in Eq. (16), the kth moment can be
expressed as:

mk tð Þ ¼
XN
i¼1

ωi tð ÞVk
i ð17Þ
Eq. (17) can be written in matrix form as:

1 1 ⋯ 1
V1 V2 ⋯ VN
⋮ ⋮ ⋱ ⋮

VN−1
1 VN−1

2 ⋯ VN−1
N

2
664

3
775

ω1 tð Þ
ω2 tð Þ

⋮
ωN tð Þ

2
664

3
775 ¼

m0 tð Þ
m1 tð Þ

⋮
mN−1 tð Þ

2
664

3
775 ð18Þ

Eq. (18) is the Vandermonde equation set. However, it's clear that
the coefficient matrix is severely morbidity and this would result in
poor accuracy if one solves it directly. Due to this, a special algorithm
is adopted for the solving of Eq. (18) to obtain the weights (wi) [49].

The transport equation for the kth moment is:

∂mk

∂t þ∇ � u!mk

� �
¼ k

XN
i¼1

Vk−1
i G Við Þwi þ

1
2

XN
i¼1

wi

XN
j¼1

wj Vi þ V j

� �k
βi; j

−
XN
i¼1

Vk
i wi

XN
j¼1

wjβi; j þ
XN
i¼1

wiaibi−
XN
i¼1

Vk
i wiai

ð19Þ

2.2.3. Micro-behaviors kernels

2.2.3.1. The particle growth rate. G(Li) is related to the polymerization
reaction rate and can be expressed as follows:

G Lið Þ ¼ d Lið Þ
dt

¼ RpL
3
0

3ρsL
2
i

ð20Þ

where, Rp is the polymerization reaction rate defined by Zacca et al.'s
equation [50].

Rp ¼ kp0 exp − E
R 273:15þ tð Þ

 �
M½ � C�	 
 ð21Þ

2.2.3.2. The aggregation kernel. Arastoorpour et al.'s model [51] with
some modifications is adopted as the aggregation kernel in this work.

βi; j ¼ KK Li þ L j

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L3i

þ 1
L3j

s
ð22Þ



Table 2
Main reaction parameters.

Parameter Values

Solid
Density, ρs 910 (kg m−3)
Heat capacity, Cp,s 2104 (J kg−1 K−1)
Thermal conductivity, s 0.1584506 (W m−1 K−1)
Diameter, ds Sauter (m)

Gas
Density, ρg 21.56 (kg m−3)
Heat capacity, Cp,g 1817 (J kg−1 K−1)
Thermal conductivity, g 0.02306446 (W m−1 K−1)
Viscosity, μg 1.081 × 10−5 (Pa s)
composition C3H6:Air = 6:1 (V:V)

Kinetic parameter
Activation energy, E 5.04 × 104 (J mol−1)
Chemical heat release, ΔH 100 KJ mol−1

Pre-exponential factor, kp0 1.2 × 104 (m3 mol−1 s−1)
Fig. 3. The initial PSD profile.
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The dimensionless coefficient KK is a function of particle tempera-
ture [52]

KK ¼ kk1 exp kk2Ts=Ts f

� �
ð23Þ

where, kk1 = 4.0 × 10−10,kk2 = 3.85.

2.2.4. The CFD-PBM
In order to describe the evolution of the particle size distribution and

its effects on the two-phase dynamics behaviors in polymerization
reaction, we have to resort to PBEs. As a result, a CFD-PBM coupled
model must be used. Fig. 2 is the schematic representation of CFD-
PBM coupled model used in this work. In each time step, the solid
volume fraction, particle velocity and temperature obtained by solving
mass conservation, momentum conservation and energy conservation
equations are used to calculate the particle growth and aggregation
kernels in PBEs. Then the PBEs can be solved, and the Sauter Diameter
is obtained to further modify the interphase force in CFD and enter the
next time step. Thus, the CFD-PBM coupled model is built.

2.3. Simulation conditions and modeling method

As mentioned above, the 2D CFD-PBM model is analogous to that
reported in our previous works [35,36,44], thus, most of the model
Table 3
Main model parameters.

Description Value

Granular viscosity Gidaspow et al. [59]
Granular bulk viscosity Lun et al. [56]
Frictional viscosity Schaeffer et al. [60]
Angle of internal friction 30°
Granular temperature Algebraic
Inlet boundary condition Velocity inlet
Outlet boundary condition Pressure outlet
Wall boundary condition No slip for air, free slip for solid phase,

the adiabatic heat-transfer equation
Initial bed height 0.2 m
Initial volume fraction of solid phase 0.63
Operating pressure 1.40 × 106 Pa
Inlet gas velocity 0.3 m · s−1

Inlet gas temperature 313 K
Restitution coefficient 0.9
Turbulent kinetic energy 0.00036 m2/s2

Turbulent dissipation rate 8.2 × 10−5 m2/s3

Maximum iterations 50
Convergence criteria 1 × 10−3

Time step 1 × 10−3 s
parameters are obtained from those literatures directly and listed in
Tables 2 and 3. The initial PSD with mean particle size of 1.835628 ×
10−4 m is shown in Fig. 3. The initial moments can be calculated using
the following formula:

mk≈
X

n Lð Þ � Lk � ΔL
� �

ð24Þ
Fig. 4. The fluidization process from 0.1 s to 3.0 s using (a) QMOM, (b) DQMOM, and
(c) FPQMOM.



Fig. 5. The evolution of Sauter diameter versus time.

Fig. 7. (a) The volume fraction using three momentmethods at 12 s. (b) The reaction rate
using three MMs at 12 s.
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Based on Refs. [13] and [21], N = 3 with the QMOM and the
DQMOMoffers the best tradeoff between accuracy and computation-
al cost. In addition, the FPQMOMwas implemented with 6 nodes. Six
order Laguerre–Gaussian abscissas have the values of {0.22284659,
1.1889321, 2.9927363, 5.7751436, 9.8374323, 15.982909}. However,
based on the nature of our system, we used the values of
{0.000022284659, 0.00011889321, 0.00029927363, 0.00057751436,
0.00098374323, 0.0015982909} as the characteristic volumes with the
FPQMOM.

The 2D CFD-PBM simulations were performed within the commer-
cial CFD package FLUENT 6.3.26 (Ansys Inc., US) with double precision
mode. The discretization scheme used in 0–2 s is the first-order upwind
to increase the stability of the solution procedure. And the second-order
upwind discretization scheme is used in 2–10 s to get more accurate
numerical results. The phase coupled SIMPLE algorithm was used to
decouple pressure and velocity [53]. The EMMS drag model [46,47],
DQMOM, FPQMOM and source terms were defined via external user-
defined scalars (UDS) and functions (UDF). The grid sensitivity was
carried out previously, which indicated that a total amount of 15,520
cells was adequate to obtain realistic results in our FBR [44]. In addition,
the simulations were performed in a platform of Intel Pentium G630
running on 2.7 GHz with 4 GB of RAM.

3. Results and discussion

Herein, in this section, the fluidization processes using three MOMs
are investigated first to explain why we collect the time-averaged
values from 2 to 10 s. Next, the evolutions of the particle diameter and
Fig. 6. The reaction rate as a function of time.
the pressure drop using three MOMs are compared. Then, the effects
of different MOMs on the flow characteristics and temperature distri-
butions are studied. Finally, the computational efficiencies with three
MOMs are discussed.

3.1. The fluidization process

Fig. 4 demonstrates the relatively fast fluidization processes from 0.1
to 3 s using all threeMOMs are similar. Thewhole bed begins to expand
at 0.1 s. Next, the bubbles appear andmove along the gas flowdirection,
which results in a uniform particle mixing in the FBR. The bed surface
remains stable from 1.4 s, which means that the whole bed can be
considered reaching a complete fluidization condition after 2 s. There-
fore, the related variables (e.g. particle velocity, solid concentration)
are assumed basically unchanged since 2 s. Based on this point, the
time-averaged values used in the following sections are obtained from
2 to 10 s.

3.2. The evolution of mean particles size

Fig. 5 shows the evolution of Sauter Diameter as a function of
polymerization time using the three MOMs. As shown in Fig. 5, using
the QMOM and the DQMOM, a similar curve can be obtained, the
slope of which (i.e. the rate of particles enlargement) decreases with
polymerization proceeding. However, using the FPQMOM, the opposite
trend can be predicted. Namely, using the FPQMOM, the increase rate of
meanparticle size is small at the initial stage of polymerization and then



Fig. 8. The pressure drop as a function of flow time.
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becomes faster. In the later stage the increase rate surpasses those pre-
dicted by the QMOM and the DQMOM. Arastoopour et al.'s experiment
data shows that large size particles favored the agglomeration of parti-
cles [51]. In addition, Arastoopour et al. also demonstrated that the
enlargement rate of particle size was proportional to particle diameter
in polymerization reaction system [51]. Accordingly, the particle en-
largement rate increaseswith the polymerization process. Furthermore,
the olefinpolymerization is a highly exothermic reaction,which leads to
the increase of the bed temperature during the polymerization. There-
fore, the reaction rate increases according to Eq. (21) (see Fig. 6). On
the other hand, in the polymerization system, the particles easily
break into many small pieces if the system temperature is low while
agglomerate together to a bigger one at high temperature (when the
temperature approaches to the melting point of polymers). The FBR is
usually operated at a relatively high temperature to maintain reason-
able polymerization rate and high catalytic activity in industry. In
addition, the reaction rate is also related to the amount of particles
(see Fig. 7). In short, the rate of particles enlargement is faster when
the particle clusters size is bigger, which means that the FPQMOM
can predict the most realistic evolution of particles size with the poly-
merization proceeding among the three MOMs.

3.3. The evolution of pressure drop

It is well known that the bed pressure drop is one of themost impor-
tant parameter in the successful design and scale up of FBRs which can
Fig. 9. Variation of time-averaged particle volume fraction along the bed (the data shown
in this figure is the average of a plane).
be calculated via the buoyant weight of the suspension expressed as
follow [54].

ΔPs ¼ ρs−ρg

� �
1−ϕð ÞgH ð25Þ

It's necessary to consider the effect of gas phase weight on the
pressure drop because the gas phase density is up to 21.56 kg · m−3

in our work:

ΔPg ¼ ϕρggH ð26Þ

Fig. 8 gives the comparison between the pressure drop obtained by
both theoretical equation and our numerical simulation using three
MOMs. The theoretical calculated value based on Eqs. (25) and (26) is
1246 Pa. It clearly shows that the simulated results can approximately
meet the calculated value. Since the bed heights predicted by the
threeMOMshave little difference (see Fig. 4), theweights of suspension
in bed are also similar. However, the simulated pressure drop values
fluctuations due to the violent motions of particles in the actual bed.
The FPQMOM can predict more severe fluctuation than the other two
before 6 s. The reason is that FPQMOM can give the smaller particle
size before 8 s, especially before 6 s (see Fig. 5). And the motions of
smaller particles are more turbulent.

3.4. The time-averaged particle volume fraction distribution

Fig. 9 illustrates the comparison of the predicted time-averaged
particle volume fraction variation along the gas flow direction using
the three MOMs, which clearly reveals that three curves have the
similar changing trend. At the bottom of the FBR (0–0.1 m), the particle
volume fraction is lower than that of the overall bed because of the
effect of the inlet gas. With the increase of bed height within the
dense phase (0.1–0.4 m), the particle concentration keeps stable due
to the excellent mass transfer ability of the FBR, which results in a
uniform particle mixing. Above 0.4 m, the particle concentration
decreases sharply and the state of dilute phase reached. Then higher
than 0.6 m, the particles are very few and their amount can be assumed
to be zero. The overall trend is in qualitative agreement with the
simulated results obtained by other researches [46,47,55]. Besides,
Fig. 9 also shows that FPQMOM can predict the smaller particle volume
fraction than the other two when the bed height is relatively low while
obtain the bigger value when the height is high. This is due to the
particle size calculated by FPQMOM is smaller before 8 s (see Fig. 5)
and the smaller one can move to higher bed.

Fig. 10 shows the simulated time-averaged particle volume fraction
profile in the radial direction at the heights of 0.2 m and 0.5m using the
three MOMs. The obvious existence of core-annular structure of the
flow is predicted by all MOMs. The particle volume fraction is bigger
near the wall due to the wall attachment effect. However, the particle
concentration is lower than that of the bed at the wall. This is because
the wall boundary condition for gas is set as no slip in this work. So
it's more easily for gas to gather at the wall, which results in the smaller
volume fraction of particle. Furthermore, the phenomenon that
“FPQMOM can predict the smaller particle volume fraction than the
other two when the bed height is relatively lowwhile obtain the bigger
one when the height is high” can be seen intuitive in Fig. 10.

In summary, all the MOMs can qualitative predict the realistic
particle volume fraction distribution. However, due to the difference
of the particle size calculated by FPQMOM, the solid volume fraction
predicted by it is also distinctive.

3.5. The time-averaged vertical particle velocity distribution

The comparison of the simulated time-averaged vertical particle ve-
locity distribution at heights of 0.2 m and 0.5 m using the three MOMs



Fig. 10. Time-averaged particle volume fraction variation along the radial direction at (a) h = 0.2 m; and (b) h = 0.5 m.
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are shown in Fig. 11. One can observe the clear existence of core-annular
structure using the three MOMs (see Fig. 11(a)). One peak appears in
the central region because the particles are entrained upwards by the
gas. However, the particles fall down along the wall in the annular re-
gion. The overall changing trend of the curve is from the positive
value in the center to the negative value near the wall. But a small de-
crease of the particles velocity can be observed at the wall. This is due
to the fact “it's more easily for gas to gather at the wall”, which we ana-
lyzed in Fig. 10. So the resistance force on particles applied by gas (drag
force) is bigger. In addition, Fig. 11(b) reveals that all the velocity of par-
ticles is negative at the height of 0.5 m. That's to say all the particles are
fall down under gravity effect at the higher plane. Meanwhile there ap-
pear two peaks in the figure. This can also well fit the simulated results
in Refs. [55,63].

3.6. The particle temperature distribution

Temperature distribution is a key indicator for the efficiency of the
operation in industrial FBRs. The reaction system will be forced to stop
if some hot spots appear, and this will lead to great damage. Herein,
the simulated gas and solid phase temperature variation along the
axial direction using the three MOMs are shown in Fig. 12. From
Fig. 12, the similar curves can be obtained using the three MOMs. Due
to the feeding of the cool fresh gaseous monomers (313.15 K), the gas
Fig. 11. Time-averaged vertical particle velocity variation along
and particle temperature at the bottom of the FBR is lower. In themean-
while, the gas temperature is lower than the solid temperature cause by
the same reason. Then the temperatures show a significant risewith the
bed height since the olefin polymerization is a highly exothermic reac-
tion. Thanks for the excellent mass and heat transfer capability of the
FBRs, the released heat can be removed promptly by gas. Hence the
change of the temperature of gas and particle with height is little. But
the increase trend is still clear. So the highest temperature along the
axial direction appears at the top of the FBR.

Fig. 13 displays the predicted particle temperature profile in the
plane at the heights of 0.2 m and 0.5 m. It can be seen from
Fig. 13(a) that the particle temperature distribution is uneven at the
lower section of the FBR due to the consideration of PSD and polymeri-
zation [35]. Furthermore, the temperature near the wall is higher than
that at other position in the plane. This is due to that the particles are
easily attached to the wall (see Fig. 10), so the reaction heat release is
also greater there. However, according to Fig. 13(b), it's relatively less
uneven of the solid temperature distribution at the higher plane. It's
due to the fewer particles in the dilute phase, and corresponding, the
heat can disperse to the whole section more easily. In addition, because
the reaction heat release is related to the solid volume fraction. The tem-
perature distribution is similar to the particle volume fraction distribu-
tion (compare Figs. 13 and 10), but also exist some difference. The
difference is caused by the excellent heat remove capability of gas.
the radial direction at (a) h = 0.2 m; and (b) h = 0.5 m.



Fig. 12. The evolution of temperature of (a) gas; and (b) solid along the axial direction (at steady state and the data shown in this figure is the average of a plane).
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Therefore, the solid temperature distribution also depends on the
temperature of gas.

3.7. The computational time

The CPU time is an important factor to evaluate whether theMOM is
effective [64]. By theoretical analysis for the three MOMs used in our
work, six UDSs are added to represent six moments with three nodes
QMOM. And the abscissas and weights can be back-calculated by
resorting to the PD algorithm in every time step. But, due to the need
of finding the values of a symmetric matrix in a PD algorithm, the real
time consumption is relatively bigger. However, with three nodes
DQMOM, six UDSs are also coupled to track three abscissas and three
weights directly. Thus the PD algorithm can be avoided so that the
real time cost is reduced. But the source term in DQMOM is more
complex, which can increase the computation time. Using FPQMOM,
there are also six UDSs added to track six moments. Because of the
constant characteristic volumes, the efficient algorithm used to calcu-
late weights, and the identical source terms with those in QMOM, the
computational process with FPQMOM is the most efficient. Based on
Fig. 13. Particle temperature variation along the radial directi
the above theoretical analysis, the sequence of the CPU time with
three MOMs is: QMOM N DQMOM N FPQMOM. And the simulated
results showed in Table 4 can also confirm our conclusion.

4. Conclusions

This work aims at choosing the most appropriate MOM for solving
the PBEs in CFD-PBMmodel framework. Three representativemethods,
QMOM, DQMOM and FPQMOM are implemented in our coupled model
for comparison. Numerical results of 2D FBR reveal: (1) the FPQMOM
can predict that the rate of particles enlargement is faster where the
particle clusters size is bigger, which is observed in experiment. Howev-
er, the QMOM and the DQMOM yield the opposite variation trend.
(2) All the three MOMs can obtain the reasonable pressure drop varia-
tion, time-averaged flow field and temperature distribution at steady.
(3) The computational load of the FPQMOM is the smallest among the
MOMs presented in this work.

Meanwhile, the FPQMOM and the DQMOM are superior to the
QMOM in theory, because PD algorithm is avoided. However, in
FPQMOM, constant positive characteristic abscissas are used, and the
on at (a) h = 0.2 m; and (b) h = 0.5 m (at steady state).



Table 4
The computation time.

QMOM DQMOM FPQMOM

CPU time:flow time/(h: s) 3.76 3.60 3.52
Improve on QMOM 4.2% 6.4%
Improve on DQMOM 2.2%
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problemof the negative abscissas is avoided. In themeanwhile, a special
algorithm for solving the Vandermonde linear system makes the
algorithm efficient and accurate. In theory, this algorithm can track
arbitrary number of moments, which is one of our main tasks in the
next step. In conclusion, application of FPQMOM for solving PBE in
CFD-PBM coupled model is reasonable and with it more reliable
results can be obtained relative to QMOM and DQMOM Therefore, we
recommend the FPQMOM for solving the PBEs in CFD-PBM coupled
framework for considering the effect of the polydispersity on the system
dynamic behaviors. Further researches on the improvement of the CFD-
PBM coupled model in FBR are in progress in our group.

Notation

Bag birth rate of particles due to aggregation (s−1)
Bbr birth rate of particles due to breakage (s−1)
Cμ , C1ε, C2ε coefficients in turbulence model
CD drag coefficient
Cp,g heat capacity coefficient of gas phase (kJ ⋅ kg−1 ⋅ K−1)
Cp,s heat capacity coefficient of solid phase (kJ ⋅ kg−1 ⋅ K−1)
[C⁎] active catalyst site concentration (kmol ⋅ kgcat−1)
ds particle diameter (m)
d32 Sauter Diameter (m)
Dag death rate of particles due to aggregation (s−1)
Dag death rate of particles due to breakage (s−1)
es particle–particle restitution coefficient
g gravitational constant (m ⋅ s−2)
G particle growth rate (m ⋅ s−1)
hg specific enthalpy of the gas (kJ ⋅ kg−1 ⋅ K−1)
hs specific enthalpy of the solid (kJ ⋅ kg−1 ⋅ K−1)
hi specific enthalpy of the ith phase (kJ ⋅ kg−1 ⋅ K−1)
I identity matrix
k specified number of moments
ks shape factor (π)
kv shape factor (π/6)
K an aggregation rate constant (m−6 ⋅ s−1)
L0 initial particle diameter (m)
L, Li, Lj particle diameter (m)
mk the kth moment of number density function (mk)
[M] monomer concentration (mol ⋅ m−3)
m•

sp mass transfer rate between the gas and solid phase
Nus Nusselt number of solid phase (dimensionless)
N the number of quadrature nodes
ps particulate phase pressure (Pa)
ΔPs pressure drop describled by the buoyant weight of the

suspension (K ⋅ Pa)
ΔPg the effect of gas phase weight on the pressure weight (K ⋅ Pa)
Pr Prandtl number of liquid phase (dimensionless)
qi heat flux (W ⋅ m−2)
Qgs intensity of heat exchange between gas and solid phases

(W ⋅ s−1 ⋅ m−3)
Res Reynolds number
t flow time (s)
Tg gas temperature (K)
Ts solid temperature (K)
Tsf the average polymermelting temperature of size Li and Lj (K)
u! particle growth rate vector due to processes other than

interaction with other particles (m ⋅ s−1)
v!g gas velocity (m ⋅ s−1)
v!s particle velocity (m ⋅ s−1)
Vi characteristic volume (m3)
wi quadrature weight (dimensionless)

Greek symbols

αg volume fraction of gas phase
αs volume fraction of solid phase
β inter-phase momentum transfer coefficient (kg ⋅ m−3 ⋅ s−1)
ε turbulence dissipation rate (m2 ⋅ s−3)
μg viscosity of gas phase (Pa ⋅ s)
μs solid shear viscosity (Pa ⋅ s)
μs,col solid collisional viscosity (Pa ⋅ s)
μs,kin solid kinetic viscosity (Pa ⋅ s)
μs,fr solid frictional viscosity (Pa ⋅ s)
σε granular kinetic theory parameter (kinetic viscosity) (Pa ⋅ s)
θ angle of internal friction (°)
Θs granular temperature (m2 ⋅ s−2)
γΘs

the collisional dissipation of energy (m2 ⋅ s−2)
τg shear stress of gas phase (N ⋅ m−2)
τs shear stress of solid phase (N ⋅ m−2)
ρg density of gas mixture (kg ⋅ m−3)
ρs density of solid (kg ⋅ m−3)
λs solid bulk viscosity (Pa ⋅ s)
κi thermal conductivity for phase i (W ⋅ m−1 ⋅ K−1)
κgs thermal conductivity of liquid phase of interphase

(W ⋅ m−1 ⋅ K−1)
ω the correction factor in EMMS drag model
ζi weight abscissas (m)
ΔQrsα heat produced from polymerization reaction (kJ ⋅ kmol−1)

Subscripts

g gas phase
s solid phase
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